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Abstract. In the current paper we present a new proof of the small ball inequality in two dimen-

sions. More importantly, this new argument, based on an approach inspired by lacunary Fourier

series, reveals the first formal connection between this inequality and discrepancy theory, namely

the construction of two-dimensional binary nets, i.e. finite sets which are perfectly distributed

with respect to dyadic rectangles. This relation allows one to generate all possible point distribu-

tions of this type. In addition, we outline a potential approach to the higher-dimensional small

ball inequality by a dimension reduction argument. In particular this gives yet another proof of

the two-dimensional signed (i.e. coefficients ±1) small ball inequality by reducing it to a simple

one-dimensional estimate. However, we show that an analogous estimate fails to hold for arbitrary

coefficients.

1. Introduction

The small ball inequality in harmonic analysis and discrepancy function estimates in discrepancy

theory are known to be closely related to each other, see e.g. [4]. However, so far this interplay was

known only on a heuristic level – it manifested itself through common methods and arguments, but

no formal implications between the two facts have been available. In the present paper, we provide

the first known formal connection between the small ball inequality and discrepancy theory. We

give a new proof of the two-dimensional version of the small ball inequality in §2, which in turn leads

to demonstrate that extremal sets of this inequality are precisely the binary nets – a well-known

class of low-discrepancy sets, see §3.

1.1. Small ball inequality. The small ball inequality is a lower bound for the supremum norm

of “hyperbolic” sums of multiparameter Haar functions. Besides being interesting in its own right,

it has important connections (both formal and heuristic) to approximation theory (metric entropy

of mixed smoothness function classes), probability theory (small ball probabilities for the mul-

tiparameter Gaussian processes), and discrepancy theory (lower bounds for the sup-norm of the

discrepancy function), see [1, 2, 4, 17, 18].

To set the stage, let D denote the set of dyadic intervals in [0, 1), i.e. intervals of the form[
m2−k, (m+ 1)2−k

)
, where k ∈ N0 and m = 0, 1, ..., 2k− 1. For a dyadic interval I ∈ D, its left and

right halves are also dyadic, and the Haar function associated to I is defined as

(1) hI(x) = −1Ileft(x) + 1Iright(x).

Notice that we normalize it in L∞, not L2.
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In higher dimensions, we consider the family Dd of dyadic rectangles (boxes) in [0, 1)d of the

form R = R1 × · · · × Rd with Ri ∈ D. The multiparameter Haar function associated to R ∈ Dd is

then defined as a coordinatewise product of one-dimensional Haar functions:

(2) hR(x) = hR1(x1) · · · · · hRd
(xd).

The small ball conjecture deals with “hyperbolic” linear combinations of Haar functions, i.e. sums

of hR supported by rectangles of fixed volume |R| = 2−n. We shall use the symbol “.” to mean

“less than a constant multiple of”, i.e. A . B means that there exists an absolute constant C > 0

such that A ≤ CB. The implicit constant C may depend on the dimension, but is independent of

the scale n and the choice of coefficients.

Conjecture 1. Let d ≥ 2.

• The small ball conjecture: For each scale n ∈ N0 and any coefficients αR ∈ R

(3) n
d−2
2 ·

∥∥∥∥ ∑
R∈Dd: |R|=2−n

αRhR

∥∥∥∥
∞
& 2−n

∑
|R|=2−n

|αR|.

• The signed small ball conjecture: For each scale n ∈ N0 and any coefficients εR ∈ {−1,+1}

(4)

∥∥∥∥ ∑
R∈Dd: |R|=2−n

εRhR

∥∥∥∥
∞
& n

d
2 .

The point of interest in the conjecture is the precise exponent of n. Inequalities (3) and (4) with

n
d−1
2 (in place of n

d−2
2 or, respectively, n

d
2 ) hold even for the L2 norm in place of L∞ and are,

in fact, very simple consequences of the Cauchy–Schwartz inequality. The exponent d − 1 is very

natural in this setting as it is the number of free parameters imposed by the condition |R| = 2−n.

The conjecture states that for the supremum norm one can gain a factor of
√
n over the L2 estimate.

The sharpness of the conjecture may be demonstrated by choosing random coefficients.

The conjecture holds in dimension d = 2, and we shall discuss this case in more detail in the

next section. In higher dimensions only partial results are known [3, 5, 6, 7, 9]. It is easy to

see that (4) is a particular case of (3). Although the signed case previously did not seem to have

direct applications to other problems, it is an important “toy model” of the problem, which presents

significant structural simplifications, while preserving most important obstacles [6, 7]. In §3 we shall

establish a formal link between the two-dimensional signed small ball inequality and discrepancy

theory: we demonstrate that the extremal sets generated by this estimate yield an important class

of low-discrepancy distributions.

1.2. Discrepancy theory and nets. Discrepancy function quantifies equidistribution of a finite

set in the unit cube. Let PN be a set of N points in [0, 1)d. Its discrepancy function is defined as

(5) DN (x1, ..., xd) = #PN ∩ [0, x1)× ...× [0, xd)−Nx1 · ... · xd,
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i.e. the difference between the true and expected numbers of points in the box [0, x1) × ... ×
[0, xd). The basic principle of irregularities of distribution states that various norms of this function

necessarily have to grow with N . The known bounds support this principle:

• Roth [12], Schmidt [14]: In all dimensions d ≥ 2, for all p ∈ (1,∞), for any PN ⊂ [0, 1)d

(6) ‖DN‖p & (logN)
d−1
2 .

• Schmidt [13]: In dimension d = 2, for any PN ⊂ [0, 1)2

(7) ‖DN‖∞ & logN.

• Bilyk, Lacey, Vagharshakyan [3, 5]: In all dimensions d ≥ 3, there exists ηd ∈ (0, 1/2) such that

for any PN ⊂ [0, 1)d

(8) ‖DN‖∞ & (logN)
d−1
2

+ηd .

The best known constructions of low-discrepancy sets, see e.g. [8], satisfy

(9) ‖DN‖∞ . (logN)d−1.

Hence one can see that the sharp rate of growth is known only in dimension d = 2. There is no

consensus as to the conjecture about the right asymptotics of ‖DN‖∞ for d ≥ 3 (sometimes referred

to as star-discrepancy).

Conjecture 2. In dimensions d ≥ 3, for any N -point set PN ⊂ [0, 1)d the sharp lower bound for

the star-discrepancy is

‖DN‖∞ & (logN)d−1 or(10)

‖DN‖∞ & (logN)d/2.(11)

While the first conjecture (10) is supported by the bounds for the best known low-discrepancy

sets (9), the second one (11) stems from the small ball inequality (3): in the signed case (4) the

similarity becomes especially apparent. While no formal implications have been proved, hyperbolic

sums of Haar functions serve as a model for DN , and (3) can be viewed as the linear term in the

discrepancy estimates, see e.g. [1, 2, 4] for an extensive discussion.

An important class of examples of low-discrepancy sets is given by the so-called nets.

Definition 3. Let t ≥ 0, m ≥ 0, d ≥ 1 be integers. A finite set P ⊂ [0, 1)d of N = 2m points

is called a dyadic or binary (t,m, d)-net if every dyadic box of volume 2t−m contains precisely 2t

points of P. Similarly, nets can be defined in other integer bases b ≥ 2 besides binary.

The parameter t is called deficiency or the quality parameter of the net. The case t = 0 is the most

interesting: in this situation every b-adic box of size 1
N contains exactly one point of P. However,

it is well known that perfect nets with t = 0 exist only when b ≥ d−1. In particular, perfect dyadic

nets exist only in dimension two and three. Nevertheless, in every dimension d ≥ 2 and in every base
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b ≥ 2, there exist nets with deficiency depending only on the dimension. Such nets by definition have

discrepancy zero with respect to b-adic boxes of size comparable to 1
N . This fact can be extrapolated

to arbitrary rectangles to show that these sets satisfy (9) ‖DN‖∞ . (logN)d−1 ≈ md−1, where the

implied constant depends only on d, b, and t. For encyclopedic information about nets the reader

is referred to the recent book [8].

In this paper we look more closely at the (0,m, 2)-nets in base b = 2, i.e. two-dimensional perfect

dyadic nets with N = 2m points. In §3 we shall show that all such nets arise precisely as extremal

sets of the two-dimensional signed small ball inequality. This characterizes all two-dimensional

(0,m, 2)-nets and gives an easy way to count the total number of such nets. In addition, this

provides another important (and this time formal) connection between the small ball conjecture

and discrepancy estimates. Our construction also easily generalizes to b-adic nets.

We shall restrict our attention to nets, in which all points have coordinates of the form kb−m,

where k = 0, 1, .., b−m − 1. In fact, every (0,m, 2)-net can be transformed into a net of this type

using the map x→ b−mbbmxc. We shall not distinguish the nets which are mapped into the same

set by this transformation and shall treat them as equivalent.

We finish the introduction by describing some standard constructions of nets in dimension d = 2.

Perhaps the best known example is the famous “digit-reversing” Van der Corput set with N = 2m

points. This set consists of all 2m points of the following form

(12)
(
0.x1x2 . . . xm−1xm, 0.xmxm−1...x2x1

)
,

where the coordinates are written in the binary form, i.e. the digits xi = 0 or 1. It is easy to see

that each dyadic rectangle R of area |R| = 2−m contains precisely one point of this set, i.e. it is a

(0,m, 2)-net in base b = 2, and b-adic modifications are obvious.

A simple standard modification of the dyadic Van der Corput set that preserves the net property

is the digit-shift defined as follows. Fix σk ∈ {0, 1}, k = 1, 2, . . . ,m. The digit-shifted Van der

Corput set consists of 2m points of the form

(13)
(
0.x1x2 . . . xm−1xm, 0.ymym−1...y2y1

)
,

where yk = xk + σk(mod 2). In other words, after reversing the order of the digits, we also change

the digits in a fixed set of positions (those where σk = 1). More general modifications (digit-

scrambling) are also used.

2. The two-dimensional small ball inequality

The small ball conjecture (3) is known to be true in dimension d = 2. There are at least two

previous proofs of this fact: one due to M. Talagrand [17], and one by V. Temlyakov [18], both

dating from the early 1990s. The latter proof uses Riesz products – a technique which was originally

used in the proof of Sidon’s theorem on lacunary Fourier series, which has an obvious similarity to

the small ball inequality, see §2.3. In this section we present a new proof of this inequality.
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Theorem 4 (The small ball inequality). In dimension d = 2, for any scale n ∈ N0 and any

coefficients αR ∈ R, the following inequality holds

(14)

∥∥∥∥ ∑
|R|=2−n

αRhR

∥∥∥∥
∞
≥ 2−n

∑
|R|=2−n

∣∣αR∣∣.
We shall actually first give a proof of its weaker variant – the signed small ball inequality , see

(4), i.e. a version of (14) with all coefficients equal to ±1. Observe that if we fix the area of a two-

dimensional dyadic rectangle |R| = 2−n, there are exactly n+ 1 different possible shapes that such

a rectangle may have. Indeed, the first side may have length |R1| = 20, 2−1, ..., 2−n, and the length

of the second side is determined automatically. Therefore in this case
∑

|R|=2−n

∣∣αR∣∣ = 2n(n+ 1), and

Theorem 4 becomes:

Theorem 5 (The signed small ball inequality). In dimension d = 2, for any scale n ∈ N0 and any

coefficients εR = ±1, the following inequality holds

(15)

∥∥∥∥ ∑
|R|=2−n

εRhR

∥∥∥∥
∞

= n+ 1.

Obviously, at each point x ∈ [0, 1]d the sum on the left-hand side contains exactly n + 1 terms

equal to ±1, so the upper bound trivially holds, and the lower bound is the core of the matter

(hence we keep the name “inequality” in (15)). Simple combinatorial structure of the signed case

makes the argument very elegant and the idea of our proof particularly transparent.

2.1. Proof of the signed small ball inequality (Theorem 5). We shall assume that n is odd,

the other case being completely analogous. For k = 0, 1,..., n define

(16) D2
k = {R = R1 ×R2 ∈ D2 : |R1| = 2−k, |R2| = 2−(n−k)},

i.e. this is the set of 2−k-by-2−(n−k) dyadic boxes.

For each k = n+1
2 ,..., n− 1, n, let us set

(17) Fk(x) =
∑
R∈D2

k

εRhR(x) +
∑

R∈D2
n−k

εRhR(x),

i.e. it is the part of our sum which contains rectangles of dimensions 2−k × 2−(n−k) and the

symmetric 2−(n−k) × 2−k. In particular, Fk is constant on dyadic squares of side length 2−(k+1).

Moreover, one can easily see that on each dyadic square of side length 2−k, up to rotations and

reflections, the function Fk has the form shown in Fig. 1, i.e. it takes values 2 and −2 in two

opposite quarters and zero in the other two.

We start with k = n+1
2 and keep the cubes of scale 2−(k+1) on which Fk = 2, discarding all the

others. Notice that there are exactly 2n+1 such cubes.
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Figure 1. The sum of two Haar functions of symmetric rectangles determines the

values of Fk on a dyadic cube of scale 2−k. Since each Haar function is multiplied

by 1 or −1 in the sum composing Fk, this square may be rotated and reflected. The

chosen sub-square, on which Fk takes the value 2, is shaded.

We then proceed inductively increasing k by one at each step. On every previously chosen cube

of scale 2−(k+1) the function Fk+1 takes values 0, −2, and 2, as in Figure 1. We choose the subcubes

on which Fk+1 = 2 and move on to the next step.

In the end we have found 2n+1 cubes of area 2−2(n+1) on which Fk = 2 for all k = n+1
2 ,..., n− 1,

n. Obviously, on each such cube

(18)
∑

|R|=2−n

εRhR =
n∑

k=n+1
2

Fk = n+ 1,

which implies (15). �

2.2. Proof of the small ball inequality for general coefficients (Theorem 4). The proof in

the case of arbitrary coefficients, inequality (14), requires minimal modifications and an additional

simple observation.

For each k = n+1
2 ,..., n− 1, n, we similarly define

(19) Fk(x) =
∑
R∈D2

k

αRhR(x) +
∑

R∈D2
n−k

αRhR(x).

On each dyadic cube Q of side length 2−k the structure of Fk can be described as follows. Let

R′ ∈ D2
k and R′′ ∈ D2

n−k be such that R′ ∩ R′′ = Q. Then Fk equals
∣∣αR′∣∣ +

∣∣αR′′∣∣ in one quarter

of Q, −
(∣∣αR′∣∣+ ∣∣αR′′∣∣) in the opposite quarter, and the values on the remaining two sub cubes are

immaterial.

Just as in the signed case, starting from k = n+1
2 we proceed inductively, at each step keeping

the subcubes on which Fk takes values
∣∣αR′∣∣+

∣∣αR′′∣∣.
We make the following additional observation. At the initial step k = n+1

2 each rectangle R ∈ D2
k

or D2
n−k contains exactly two chosen cubes: indeed, every such R consists of exactly two cubes of

side length 2−k, and each of them in turn contains one chosen subcube. Moreover, because of the
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Figure 2. An induction step in showing that each rectangle R contains precisely

two chosen squares, lying in two opposite quarters.

structure of the Haar function and the fact that we were choosing cubes on which αRhR(x) ≥ 0,

these two cubes lie in opposite quarters of R.

This guarantees that at each following step dyadic boxes also contain exactly two chosen boxes

in opposite quarters, because any rectangle R ∈ D2
k+1 intersects exactly two rectangles from D2

k

and will thus contain one previously chosen cube in each. We shall further choose a subcube in

each of those, which will in turn have to lie in opposite quarters of R (see Figure 2).

In the end we will have chosen 2n+1 cubes Q1, Q2,..., Q2n+1 of area 2−2(n+1) such that on each

cube Qj we have

(20)
∑

|R|=2−n

αRhR(x) =
∑
R⊃Qj

∣∣αR∣∣.
In addition, every dyadic box R with |R| = 2−n contains precisely two cubes Qj .

Estimating the maximum by the average we easily obtain∥∥∥∥ ∑
|R|=2−n

αRhR

∥∥∥∥
∞
≥ max

j=1,...,2n+1

∑
R⊃Qj

∣∣αR∣∣(21)

≥ 1

2n+1

∑
Qj

∑
R⊃Qj

∣∣αR∣∣ =
1

2n+1

∑
R

∣∣αR∣∣ ∑
Qj⊂R

1

= 2−n
∑

R:|R|=2−n

∣∣αR∣∣,
which proves (14). �

2.3. Similarities to lacunary Fourier series. One needs not look very scrupulously in order to

notice the similarity of the small ball inequality (14) to Sidon’s theorem on lacunary Fourier series.

Theorem 6 (Sidon, 1927 [15]). Let the sequence {nk} ⊂ N be lacunary, i.e. there exists λ > 1

such that for each k ∈ N we have
nk+1

nk
≥ λ. Then there exists a constant C > 0 such that for any

real coefficients αk, the following inequality holds

(22)

∥∥∥∥∑
k

αk sin 2πnkx

∥∥∥∥
∞
≥ C

∑
k

∣∣αk∣∣.
The similarity becomes somewhat natural if one realizes that the two-dimensional Haar functions

on dyadic boxes
{
R ∈ D2 : |R| = 2−n} essentially form a one-parameter family (one of the two
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parameters is eliminated by the condition |R| = 2−n) and their frequencies are dyadic, i.e. lacunary

with λ = 2.

As pointed out earlier, the proof of (14) given by Temlyakov in [18] utilizes Riesz products and

is very similar to the proof of Sidon’s theorem. More precisely, Riesz products by themselves prove

(22) for the case λ ≥ 3. (Both proofs are described in detail in [1, 2].) In fact, the cubes chosen in

our argument are precisely the support of the Riesz product constructed in [18].

We would like to point out that our argument is similar to yet another proof of Sidon’s theorem

with large lacunarity constant. Indeed, if we assume that, say λ ≥ 9, we can run the following

induction argument. At each step k look at the set
{
x ∈ [0, 1) : αk sin 2πnkx ≥ 1

2

∣∣αk∣∣}. This

set consists of periodically repeating intervals of length 1
3nk

. Each of these intervals contains at

least 3 full periods of sin 2πnk+1x, in particular at the next step we can find a complete interval of

length 1
3nk+1

on which αk+1 sin 2πnk+1x ≥ 1
2

∣∣αk+1

∣∣ within the previously chosen interval. One can

immediately recognize this idea in our proof of inequality (15).

3. Two-dimensional small ball inequality and low-discrepancy sets

We now take a closer look at the structure of the set of 2n+1 squares of side length 2−(n+1) which

was constructed in the proof of Theorem 4 and 5, in other words the set where
∑

|R|=2−n

εRhR(x)

achieves the maximal value, or equivalently, the set on which all the terms of
∑

|R|=2−n

αRhR(x) are

nonnegative.

It has already been observed in [2] that in the case of positive coefficients, i.e. when αR ≥ 0

(or εR = +1) for all R ∈ D2 with |R| = 2−n, this set coincides with the “digit-reversing” Van

der Corput set (12) with N = 2n+1 points (here we frivolously identify small squares with points,

namely their lower left corners). Indeed, given a dyadic rectangle R of dimensions 2−k×2−(n−k), it

is easy to see that hR(x) = +1 precisely for those points x =
(
x(1), x(2)

)
∈ R, for which the (k+1)st

binary digit of x(1) coincides with the (n− k + 1)st digit of x(2), i.e. both are 0 or both are 1.

We now turn to the case when the signs of the coefficients are completely arbitrary. Looking

back at the proof of Theorem 4, we recall that we found that every rectangle R ∈ D2 of area 2−n

contains precisely 2 of the squares from our resulting set. This means exactly that this set is a

(1, n + 1, 2)-net. However, in addition we know that these squares live in opposite quarters of R.

Thus each dyadic rectangle R of area 2−(n+1) contains precisely one chosen square. Indeed, take

any dyadic “parent” of R (vertical or horizontal): it contains two squares, but in opposite quarters,

so exactly one of them lives in R. We therefore arrive at the following result.

Theorem 7. Let εR = ±1 for R ∈ D2 with |R| = 2−n. Then the set of points, on which the sum∑
|R|=2−n

εRhR(x) achieves its maximal value of n+ 1, consists of 2n+1 dyadic squares of side length
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2−(n+1), whose lower left corners form a binary (0, n+ 1, 2)-net in base 2, i.e. every dyadic box of

area 2−(n+1) contains precisely one cube from this set.

It is easy to see that this construction covers the standard examples of two-dimensional nets:

• As discussed above, when εR = +1 for all R ∈ D2 with |R| = 2−n, the arising net is the Van der

Corput set with N = 2n+1 points (12).

• If εR depends only on the geometry of R, i.e. εR = ε(|R1|, |R2|), in other words the signs are

the same for the whole “layer” of disjoint dyadic rectangles of the same shape, then one obtains

a digit-shifted Van der Corput set (13). It is easy to see that the shift is given by a sequence σ,

for which σk = 1 precisely when the boxes R ∈ D2
k−1, i.e. with |R1| = 2−(k−1), have coefficient

εR = −1.

• If the coefficients have product structure, i.e. for R = R1 × R2 we have εR1 · εR2 , then the

construction yields the so-called Owen’s scrambling ([11]; see [8, page 396]) of the Van der Corput

set. Incidentally, the signed small ball inequality for coefficients with product structure has been

recently proved in all dimensions [9].

When the signs of the coefficients are arbitrary and not structured, our construction provides a

much wider range of of nets. Moreover, all nets can be constructed via this procedure.

Proposition 8. Let P be a (0, n + 1, 2)-net in base 2 in which all points have coordinates of the

form k2−(n+1), where k = 0, 1, ..., 2n+1 − 1. Then there exists a choice of coefficients εR = ±1,

R ∈ D2, |R| = 2−n, such that
∑

|R|=2−n

εRhR(x) achieves its maximal value of n+ 1 on the set

P +
[
0, 2−(n+1)

)2
,

i.e. on a set, which consists of 2n+1 dyadic squares of side length 2−(n+1), whose lower left corners

are precisely the points of P.

Proof. By the net property, any rectangle R ∈ D2 with |R| = 2−n contains exactly two points of P,

as it is a union of two rectangles of volume 2−(n+1). Since R can be divided into dyadic ”children”

in two ways (horizontally and vertically), these points lie in the opposite quarters of R. We can

now choose the sign εR so that these points lie in the set where εRhR = +1.

We thus construct coefficients for all dyadic boxes of area 2−n. By construction, at every point

p of the net P together with the adjacent small square, i.e. on the set P +
[
0, 2−(n+1)

)2
, we have∑

|R|=2−n

εRhR(x) = n + 1. But Theorem 5 implies that this is the maximal value of the sum, and

Theorem 7 dictates that the set where this maximum is achieved does not contain anything else. �

As a side perk, this characterization gives a simple way to compute the number of different nets.

Set m = n+ 1. The set {R ∈ D2 : |R| = 2−n} contains (n+ 1)2n = m2m−1 elements, and each εR

takes one of two values. We thus obtain the following:
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Corollary 9. Let m ∈ N. The number of different dyadic (0,m, 2)-nets, in which all points have

coordinates of the form k2−m, k = 0, 1, ..., 2m − 1 is 2m2m−1
.

This fact has been previously established by Xiao [19, 20], who also provided a different character-

ization of (0,m, 2)-nets. In addition, almost simultaneously with us, Pillichshammer and coauthors

[10] obtained yet another algorithm of generating all dyadic (0,m, 2)-nets.

3.1. Extensions to general integer bases b ≥ 2. It is fairly straightforward to generalize these

results to b-adic nets. Rather than using standard b-adic Haar functions, we shall utilize a specially

constructed collection of functions, which generalizes dyadic Haar functions in a slightly different

way adapted to our goal.

For an integer base b ≥ 2, we define the system of b-adic subintervals of [0, 1) as

Db =
{[
kb−m, (k + 1)b−m

)
: m ∈ N0, k = 0, 1, . . . , bm − 1

}
.

Then Ddb is the collection of b-adic boxes in [0, 1)d.

A given box R ∈ D2
b of dimensions b−m1 × b−m2 can be represented as a union of a b× b array of

b-adic boxes of dimensions b−(m1+1) × b−(m2+1). We define the family of functions HR as follows.

The function φR ∈ HR if and only if the following conditions hold:

• φR takes values ±1 on R and vanishes outside R.

• φR is constant on b-adic subboxes of R of dimensions b−(m1+1) × b−(m2+1).

• In each row and in each column of the b×b array of b-adic subboxes of R of dimensions b−(m1+1)×
b−(m2+1), there is exactly one subbox, on which φR = +1.

Obviously HR contains b! different functions. In addition, observe that when b = 2, HR consists

of precisely 2 functions: ±hR. One can easily check that our arguments directly extend to the b-adic

case. We summarize the results in the following theorem. For the sake of brevity, we shall call

(t,m, d)-nets in which all points have coordinates of the form kb−m, k = 0, 1, . . . , bm − 1, standard.

Theorem 10. Fix the scale m ∈ N and an integer base b ≥ 2. For each b-adic box R ∈ D2
b with

|R| = b−(m−1), choose a function φR ∈ HR. Then

(i) A b-adic analogue of the signed small ball inequality holds:

(23) max
x∈[0,1)2

∑
R∈D2

b

|R|=b−(m−1)

φR(x) = m.

(ii) The set on which the maximum above is achieved has the form

(24) P +
[
0, b−m

)2
,

where P is a standard (0,m, 2)-net in base b.

(iii) Every standard (0,m, 2)-net P in base b may be obtained in this way, i.e. for every such P
there exists a choice of φR ∈ HR so that the set, where

∑
|R|=b−(m−1) φR attains its maximal

value, is precisely P +
[
0, b−m

)2
.

10



(iv) The number of different standard (0,m, 2)-nets in base b is (b!)mb
m−1

.

We point out that part (iv) has been previously proved by Xiao [19, 20].

4. Dimension reduction for the signed small ball inequality

The signed small inequality in dimension d may be deduced from a similar inequality in dimension

d− 1, where the summation condition |R| = 2−n is replaced by the condition |R| ≥ 2−n.

Lemma 11. Let d ≥ 2. Assume that in dimension d′ = d− 1 ≥ 1 for all coefficients εR = ±1 we

have the following inequality:

(25)

∥∥∥∥ ∑
|R|≥2−n

εRhR

∥∥∥∥
∞
& n

d′+1
2 = n

d
2 .

Then in dimension d ≥ 2 for all coefficients εR = ±1 we have

(26)

∥∥∥∥ ∑
|R|=2−n

εRhR

∥∥∥∥
∞
& n

d
2 .

Proof. The proof of this fact is based on the restriction of the sum in (26) to a hyperplane. Indeed,

write x ∈ [0, 1)d as x = (x1, x
′) with x1 ∈ [0, 1), x′ ∈ [0, 1)d−1, and similarly write R ∈ Dd as

R = R1 × R′, where R1 ∈ D and R′ ∈ Dd−1. We have |R| = 2−n if and only if |R′| ≥ 2−n. For a

fixed x1 ∈ [0, 1) and k ≥ 0, there is exactly one dyadic interval R1 of length 2−k containing x1.

Therefore, with x1 fixed, the sum in (26) becomes∑
|R|=2−n

εRhR(x) =
∑

|R′|≥2−n

∑
R13x1

|R1|=2−n/|R′|

[
εR1×R′hR1(x1)

]
hR′(x

′) =
∑

|R′|≥2−n

ε′R′hR′(x
′).

Here we used the fact that the sum in the middle contains just one non-zero term and we have set

ε′R′ = εR1×R′hR1(x1) = ±1, where R1 is uniquely determined by R′ and x1. Since for fixed x1, we

have ‖f‖L∞(x) ≥ ‖f(x1, ·)‖L∞(x′), the conclusion of the lemma follows. �

This lemma yields yet another very simple proof of the two-dimensional signed small ball in-

equality. Indeed, the one-dimensional estimate

(27)

∥∥∥∥ ∑
|R|≥2−n

εRhR

∥∥∥∥
∞
≥ n+ 1

is almost obvious: it can be proved by choosing a nested sequence of dyadic intervals R(k) with

|R(k)| = 2−k, k = 0, 1, . . . , n, on which all εR(k)hR(k) = +1.

Moreover, in the two-dimensional case, the converse implication in Lemma 11 also holds, which

follows from our proof of (15). Consider the one dimensional sum
∑
|R2|≥2−n εR2hR2(x2). For

any two-dimensional box R = R1 × R2 with |R| = 2n and such that R1 contains zero (in which

case hR1(0) = +1), set εR = εR2 , and define the signs arbitrarily for other boxes. Since the

11



extremal set of the two dimensional sum is a net, it contains a 2−(n+1)× 2−(n+1) square in the box[
0, 2−(n+1)

)
× [0, 1), i.e. we know that the maximum is achieved, in particular when x1 = 0. We

then have

(28)

∥∥∥∥ ∑
|R2|≥2−n

εR2hR2(x2)

∥∥∥∥
∞

=

∥∥∥∥ ∑
R=R1×R2

|R|=2−n

εRhR(0, x2)

∥∥∥∥
∞

=

∥∥∥∥ ∑
|R|=2−n

εRhR

∥∥∥∥
∞

= n+ 1.

We do not know whether estimates (25) and (26) are generally equivalent, i.e. whether Lemma 11

can be reversed in dimension d ≥ 3.

Summation over the set {|R| ≥ 2−n} has, in fact, been considered in [18], where it was shown

that in dimension d = 2

(29)

∥∥∥∥ ∑
|R|≥2−n

αRhR

∥∥∥∥
∞
& 2−n

∑
|R|=2−n

|αR|,

which is slightly stronger than the two-dimensional version (14) of the small ball conjecture (3):

the right-hand side stays the same, but the left-hand side contains more terms. Observe that the

signed version of estimate (29), in all dimensions d′ ≥ 1, is trivial due to orthogonality:

∥∥∥∥ ∑
|R|≥2−n

εRhR

∥∥∥∥
∞
≥
∥∥∥∥ ∑
|R|≥2−n

εRhR

∥∥∥∥
2

=

(
n∑
k=0

∑
|R|=2−k

2−k

) 1
2

≈

(
n∑
k=0

kd
′−1

) 1
2

≈ nd′/2,

where we have used the fact that #{R : |R| = 2−k} ≈ kd′−1 ·2k. This naturally only implies the L2

bound for the signed small ball inequality in dimension d = d′ + 1, i.e.

∥∥∥∥ ∑
|R|≥2−n

εRhR

∥∥∥∥
∞
& n

d−1
2 .

The signed version of (29) implies that one neither gains, nor loses by extending the range of

summation from {|R| = 2−n} to {|R| ≥ 2−n}. In order to deduce the three-dimensional version

of the conjecture, one should show that this extension actually gains a factor of
√
n. This may

be a viable approach to the three-dimensional signed small ball inequality, since one can use two-

dimensional methods, however many of the difficulties are still preserved.

4.1. The case of general coefficients. One may ask whether this “dimension reduction” applies

to the general small ball inequality (3). We shall demonstrate that, while such a reduction is

formally possible, and moreover, the underlying one-dimensional estimate even yields a proof of

the signed conjecture in all dimensions, there are intrinsic problems: already the one-dimensional

case is false!!! This reveals some fundamental differences between the general and the signed

inequalities.

In dimension d′ = 1 a proper analog of (25), or of (27), would be the following:

(30)

∥∥∥∥ ∑
I∈D: |I|≥2−n

αIhI

∥∥∥∥
∞
&

∑
|I|≥2−n

∣∣αI ∣∣ · |I|.
12



This inequality would easily imply the small ball inequality (3) in two dimensions. Indeed, fix x2

for the moment. Then∥∥∥∥ ∑
|R|=2−n

αRhR

∥∥∥∥
L∞(x1)

=

∥∥∥∥ ∑
|R1|≥2−n

( ∑
|R2|=2−n/|R1|

αR1×R2hR2(x2)

)
hR1(x1)

∥∥∥∥
L∞(x1)

≥
∑

|R1|≥2−n

∣∣∣∣ ∑
|R2|=2−n/|R1|

αR1×R2hR2(x2)

∣∣∣∣ · |R1|.

Replacing the sup by the average in the second variable we find that∥∥∥∥ ∑
|R|=2−n

αRhR

∥∥∥∥
∞
≥

∑
|R1|≥2−n

∥∥∥∥ ∑
|R2|=2−n/|R1|

αR1×R2hR2

∥∥∥∥
L1(x2)

· |R1|

=
∑

|R1|≥2−n

∑
|R2|=2−n/|R1|

|αR1×R2 | · |R2| · |R1| = 2−n
∑

|R|=2−n

|αR|,

where we have used the fact that all the Haar functions inside the L1 norm have disjoint support.

Higher-dimensional analogs of this implication may also be formulated.

4.2. The one-dimensional estimate (30) implies the signed small ball conjecture in all

dimensions. Quite unexpectedly, the one-dimensional inequality (30) would actually imply the

signed small ball inequality (4) in all dimensions d ≥ 2 via the following argument.

Denote Hn =
∑

|R|=2−n

εRhR. We notice that in dimension d ≥ 2, ‖Hn‖1 & n
d−1
2 . Indeed, we

have ‖Hn‖2 ≈ ‖Hn‖4 ≈ n
d−1
2 (L2 is just Parseval’s identity, and L4 follows from Littlewood–

Paley: this is well explained in [2]). And a simple application of Hölder’s inequality, namely

‖Hn‖2 ≤ ‖Hn‖1/31 · ‖Hn‖2/34 , yields the answer. We are going to use this observation in dimension

d− 1.

Write x ∈ [0, 1)d as x = (x1, x
′), where x1 ∈ [0, 1), x′ ∈ [0, 1)d−1. Also, split any R = R1×R′ ∈ Dd

in a similar way. Fix x′ for the moment. We have, using (30), that

∥∥∥∥ ∑
|R|=2−n

εRhR

∥∥∥∥
L∞(x1)

=

∥∥∥∥ ∑
|R1|≥2−n

( ∑
|R′|=2−n/|R1|

εR1×R′hR′(x
′)

)
hR1(x1)

∥∥∥∥
L∞(x1)

≥
∑

|R1|≥2−n

∣∣∣∣ ∑
|R′|=2−n/|R1|

εR1×R′hR′(x
′)

∣∣∣∣ · |R1|

We now replace the L∞ norm in the rest of the variables by L1 and then use the observation above.
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∥∥∥∥ ∑
|R|=2−n

εRhR

∥∥∥∥
∞
≥

∑
|R1|≥2−n

∥∥∥∥ ∑
|R′|=2−n/|R1|

εR1×R′hR′(x
′)

∥∥∥∥
L1(x′)

· |R1|

&
n∑
k=0

∑
|R1|=2−k

(n− k)
d−2
2 · 2−k =

n∑
k=0

(n− k)
d−2
2 ≈ nd/2.

Remark. The numerology of the signed small ball conjecture says that, roughly speaking, one

should get
√
n from every dimension. An L2 estimate only gives one square root less. What we do

here is apply the one-dimensional estimate (30) to obtain n from the first coordinate, then apply

the L2 bounds to get exponent d−2
2 from the other d − 1 coordinates. A similar argument has

recently been used in [9] to prove the signed conjecture in all dimensions, in the case when the

signs have product structure εR = εR1 ·εR′ . Moreover, a very similar idea has been exploited in [16]

to show that the discrepancy conjecture (11) holds for a random digit-shift of an arbitrary N -point

set in [0, 1)d.

4.3. The one-dimensional estimate (30) is false. We shall now demonstrate that unfortunately

the one-dimensional inequality (30) does not hold in general. This sharply contrasts the signed case,

where the corresponding inequality (27) is almost trivial.

The counterexample is constructed inductively with all coefficients αI equal to zero or one. Start

with the scale k = 0 and assign α[0,1) = 1. At each subsequent scale k, for every dyadic interval J

with |J | = 2−k and with not yet assigned coefficient, consider the modulus of the value of the sum

of the previously chosen signed Haar functions

∣∣∣∣ ∑
|I|>2−k

αIhI

∣∣∣∣ on the interval J . If this value is at

least n
2
3 , assign coefficient zero to J as well as all of its “children”, i.e. αJ = 0 and αJ ′ = 0 for all

J ′ ⊂ J . Otherwise, assign αJ = 1.

In the end, by construction we would have that the left-hand side satisfies

(31)

∥∥∥∥ ∑
|I|≥2−n

αIhI

∥∥∥∥
∞
≤ n

2
3 ,

since we suppressed all intervals, where the value may have been greater.

On the other hand, for the right-hand side we have

(32)
∑
|I|≥2−n

∣∣αI ∣∣ · |I| = ∑
|I|≥2−n

∣∣αI ∣∣2 · |I| = ∥∥∥∥ ∑
|I|≥2−n

αIhI

∥∥∥∥2
2

by Parseval’s identity.

If all coefficients are equal to one, the sum
∑
|I|≥2−n

hI may be viewed as a sum of n + 1 inde-

pendent ±1 random variables
∑
|I|=2−k

hI , where k = 0, 1, . . . , n. Thus, there exists a set of positive
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measure c > 0, on which

∣∣∣∣ ∑
|I|≥2−n

hI

∣∣∣∣ > c1
√
n. On those intervals, where we have set the coeffi-

cients equal to zero, by construction, we have

∣∣∣∣ ∑
|I|≥2−n

αIhI

∣∣∣∣ ≥ n 2
3 �

√
n. Therefore, we still have∣∣∣∣ ∑

|I|≥2−n

αIhI

∣∣∣∣ > c1
√
n on a set of positive measure, i.e.

∥∥∥∥ ∑
|I|≥2−n

αIhI

∥∥∥∥
2

&
√
n.

Thus the left-hand side is at most n
2
3 , while the right-hand side is of the order n� n

2
3 . Therefore

(30) fails in this case.

Acknowledgements: The authors would like to express gratitude to IMA and NSF: the research

of the first author was supported by the NSF grant DMS 1101519, and the second author’s stay at

IMA was also supported by NSF funds. The authors are also extremely grateful to Ohad Feldheim

for contributing the idea of §4.3, and to Josef Dick and Wolfgang Schmid for pointing out references

[19, 20].

References

[1] D. Bilyk, Roth’s orthogonal function method in discrepancy theory, Uniform Distribution Theory 6

(2011), no. 1, 143–184. 1, 3, 8

[2] D. Bilyk, Roth’s orthogonal function method in discrepancy theory and some new connections, in:

“Panorama of Discrepancy Theory”, Lecture Notes in Math 2017, Springer-Verlag (2014), pp. 71–158.

1, 3, 8, 13

[3] D. Bilyk, M. Lacey, On the small ball Inequality in three dimensions, Duke Math. J. 143 (2008), no. 1,

81–115. 2, 3

[4] D. Bilyk, M. Lacey, The supremum norm of the discrepancy function: recent results and connections,

Monte Carlo and Quasi-Monte Carlo Methods 2012, Springer Proceedings in Math. and Stat. 65, Springer

Verlag (2013). 1, 3

[5] D. Bilyk, M. Lacey, A. Vagharshakyan, On the small ball inequality in all dimensions, J. Funct. Anal.

254 (2008), no. 9, 2470–2502. 2, 3

[6] D. Bilyk, M. Lacey, A. Vagharshakyan, On the signed small ball inequality, Online Journal of Analytic

Combinatorics, 3 (2008). 2

[7] D. Bilyk, M. Lacey, I. Parissis, A. Vagharshakyan, A three-dimensional signed small ball inequality,

“Dependence in Probability, Analysis and Number Theory”, Walter Philipp memorial volume, 73–87,

Kendrick Press, Heber City, UT (2010). 2

[8] J. Dick, F. Pillichshammer, Digital nets and sequences. Discrepancy theory and quasi-Monte Carlo

integration. Cambridge University Press, Cambridge (2010). 3, 4, 9

[9] D. Karslidis, On the signed small ball inequality with restricted coefficients, (2015), to appear. 2, 9, 14

[10] G. Leobacher, F. Pillichshammer, T. Schnell, Construction algorithms for plane nets in base b, preprint

(2015). 10

[11] A. Owen, Randomly permuted (t,m, s)-nets and (t, s)-sequences. Monte Carlo and quasi-Monte Carlo

Methods 1994, vol. 106 of Lecture Notes in Statistics, 299–317. Springer, New York (1995). 9

[12] K. F. Roth, On irregularities of distribution. Mathematika 1 (1954), 73–79. 3

15



[13] W. M. Schmidt, Irregularities of distribution. VII. Acta Arith. 21 (1972), 45–50. 3

[14] W. M. Schmidt, Irregularities of distribution X. Number Theory and Algebra, 311–329. Academic Press,

New York (1977). 3

[15] S. Sidon, Verallgemeinerung eines Satzes über die absolute Konvergenz von Fourierreihen mit Lücken,

Math. Ann., 97 (1927), 675–676. 7

[16] M. M. Skriganov, Dyadic shift randomizations in classical discrepancy theory, preprint (2014). Available

at http://arxiv.org/pdf/1409.1997.pdf 14

[17] M. Talagrand, The small ball problem for the Brownian sheet. Ann. Probab., 22 (1994), 1331–1354. 1, 4

[18] V.N. Temlyakov, Some Inequalities for Multivariate Haar Polynomials. East Journal on Approximations,

1 (1995), 61–72. 1, 4, 8, 12
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